How to Download Purple Air Data and Interpret Data

1. Go to the Purple Air website: https://www2.purpleair.com/

Click on View the Map to get to the Purple Air Map. Or you can click on the link below as well.

Map: https://www.purpleair.com/map?opt=1/mAQI/a10/cC0#4.58/34.72/-111.09

2. Select a sensor location and click on it.

3. Go to Map Data Layer. The Map Data Layer can be found on the lower left hand side of the map where you will see the color-coded US EPA PM2.5 Air Quality Index as default. Under conversion, be sure to NONE is selected for the conversion factor/correction equation (None should be the default).

US EPA PM2.5 AQI \vee None Standard \vee 10 Minute Average n/a 0 50 100 150 200 250 300 350 400 500 Outside Inside Show My Averages Inside Show My Averages	Conversion: ? X	Map Data Layer: ?
Standard V 10 Minute Average V n/a 50 100 150 200 250 300 350 400 500- Outside Inside Show My Average Average	▼ None ▼	US EPA PM2.5 AQI
n/a 0 50 100 150 200 250 300 350 400 500-	e Average 🗸	Standard 🗸 10 Minut
👝 Outside 🦱 Inside 🚽 Show My 🦳 Averages	00 250 300 350 400 500-	n/a 0 50 100 150 20
Sensors Sensors Sensors Sensors as Rings	Show My O Averages Sensors as Rings	Outside Sensors Sensors
July 22nd, 2021, 1:09:11 PM MDT	1:09:11 PM MDT	July 22nd, 2021,

4. Next, navigate to the right hand side of the screen and click on the download icon which will take you to the **Sensor Data Download Tool** website.

The Sensor Data Download tool will allow you to download data from the sensor's Channel A and Channel B measurements. It will also allow you to view Primary data and Secondary data.

Primary Data is where you will find PM (PM₁, PM_{2.5}, PM₁₀) sample values as well as Temperature and Relative Humidity sample values. PM2.5 data is reported as either CF_1 or ATM. If a conversion factor is selected in the Map Data Layer, then a specific correction equation is applied to the ATM sample values to report out atmospheric or outdoor mass measurements in units of micrograms per cubic meter (μ g/m³) of air. On the other hand, the CF_1 mass measurement (μ g/m³) values use the outdoor measurements to estimate indoor measurements, which are slightly more elevated than ATM values. EPA suggests using the CF_1 values with no conversion factor selected in the Map Data Layer, instead of the ATM values, to correct outdoor mass concentrations as they provide higher concentrations that are more strongly correlated with FRM/FEM monitors. Secondary Data is where you will find particle counts in units of microns (micrometer) per deciliter of air as well as outdoor measurements for PM_1 and PM_{10} in units of $\mu g/m^3$.

The UptimeMinutes column tells you how long the sensor has been in operation and the RSSI_dbm corresponds to "Received Signal Strength Indicator." RSSI is a measurement of how well your device can hear a signal from an access point or router. It's a value that is useful for determining if you have enough signal to get a good wireless connection. Since RSSI varies greatly a more standardized, absolute measure of signal strength is measured in decibels, or dBm on a logarithmic scale. There's a lot of math we could get into, but basically, the closer to 0 dBm, the better the signal is.

5. To begin downloading data from the Sensor Data Download Tool, first select your Start and End date. Then you want to select your averaging intervals, the options are 10 minute, 15 minute, 30 minute, 60 minute, up to 1440 minutes which is a 24-hour average. **Select 60 minutes in order to use the time stamp correction spreadsheet we discuss in the next few steps.**

6. In the example above, the date range begins 6/17/21 and ends 6/21/21. The average interval is 60 minutes, which is basically 1-hour averages.

7. Next, you want to select which channel to report data into a .CSV download file. **Select Download Primary (A) in order to use the time stamp correction spreadsheet we discuss in the next few steps.**

Note that you can also download Secondary data from either Channel A or B, but we focus on Primary data from Channel A for use in the spreadsheet discussed in the next few steps. Or you can select All which will give you data from both Channel A and B to include both Primary and Secondary data. As you can see in the picture above, for this example, Channel A is selected to report both Primary and Secondary data.

8. A *.CSV file containing the data will be generated in the lower left hand side of the web browser and you should be able to click on the file and open it.

9. Click on the up arrow on the file and open the file to view the data. Data should look like this.

I	ਜ਼ ਾ • • • •	:					Ship	rock Agenc	y 1 (outside) ((36.789	641 - 108.6760	075) Primary 6	i0_min	ute_average 0	5_17_202 ⁻	1 06_21_2021	(1).csv	- Exce
F	ile Home	Insert	Page Layo	ut Fo	rmulas	Data F	Review Vi	ew 🖓	Tell me what	you w	ant to do							
1	Cut	Ca	libri	* 11	× A A	= = =	= »r -	📴 Wrap T	ext	Gene	eral	•			Norma	1	Bad	
Pa	ste • 🍼 Format Pair	B	I <u>U</u> -	<u>-</u>	- <u>A</u> -	= = =	€ →	🔛 Merge	& Center 🔹	\$ -	% , 5	.0 .00 Con	dition	al Format as	Good		Neutra	al
	Clipboard	G	Fo	nt	Fa		Alignm	ent	G		Number	roin Fa	atting	· lable ·	Sty	les		
B3		×	√ f _x	11.92														
	A		В		c		D		E		F	G		н		1		J
1	created_at		PM1.0_CF1	_ug/m3	PM2.5_CF	1_ug/m3	PM10.0_CF	1_ug/m3	UptimeMir	nutes	RSSI_dbm	Temperatu	re_F	Humidity_9	6 PM2.5	5_ATM_ug/	/m3	
2	2021-06-17 00:00	:00 UTC		8.74		12.25		13.43		7724	-65.13		112.5	0.4	7	1	2.25	
3	2021-06-17 01:00	:00 UTC		11.92		16.4		17.42		7784	-67.63	1	08.47	1.1	7	1	6.39	
4	2021-06-17 02:00	:00 UTC		14.15		20.34		22.36		7844	-64.33		103.5	3.9	3	2	0.28	
5	2021-06-17 03:00	:00 UTC		11.81		17.13		18.69		7904	-65.23	1	00.13		6	1	7.13	
6	2021-06-17 04:00	:00 UTC		12.04		17.58		19.3		7964	-64.43		97.97	6.3	7	1	7.58	
7	2021-06-17 05:00	:00 UTC		12.41		18.64		20.74		8024	-67.5		94.17	7.9	7		18.6	
8	2021-06-17 06:00	:00 UTC		13.54		19.38		20.65		8084	-64.5		92.77	9.	7	1	9.38	

10. As you can see, the time stamp is in Coordinated Universal Time or UTC time. UTC time is the world time standard that regulates clocks and time. It is commonly used by the scientific community in many technical fields. For example, meteorologists, the aviation industry use this time, and it is used to synchronize time across internet networks. The Purple Air Sensor Time Stamp Correction spreadsheet converts the time stamp to the time in your area using formulas in Microsoft Excel. Begin by opening the spreadsheet and reading the ReadMeFirst tab. The Steps shown in the ReadMeFirst tab are a quick summary of this document.

	AutoSave 🤇	OH	89					pleAirSen:	orTimeS	tampG	orrectior	uxlsx 👻	Q	Searc	h
F	ile Hor	ne I	nsert	Page	Layou	t F	ormulas	Data	Revie	W.	View	Developer	Help		
0	1	• I	\times	~	fx –										
1	A	В		С		0	Е	F		G	Н	1	J		к
1	READ MI	FIRST													
2															
3	Step 1:	Dowr	nload F	Primary	(A), (60 Mi	inute Av	erages f	rom the	e Purj	ple Air	website (se	e attac	hed	SOP). No
4															
5	Step 2:	Selec	t your	time z	one fr	om t	he selec	tion box	in the	Paste	eData t	ab of this s	oreadsh	neet.	
6															
7	Step 3:	Сору	and p	aste th	e dat	a fro	m the .c	sv file yo	ou dow	nload	led froi	m the Purpl	e Air w	ebsit	e into ce
8		The c	lata he	eaders	of the	e orig	inal dat	a from y	our .cs	v file i	must n	natch the co	lumn h	ead	ers show
9															
10	Step 4:	In the	e View	tab, yo	ou car	n nov	v view yo	our data	in you	r time	e zone	and with th	e 2019	US-\	Vide Cor
11		As ne	eded,	modify	the (chart	in the V	'iew tab	(for ex	ample	e, chan	ge the data	range	to a	oply to ye
12															
13															
14	Disclaim	er:													
15	Northern	1 Ariz	ona Un	iversit	y's In	stitu	te for Ti	ribal En	vironme	ental	Profes	sionals, Trit	al Air l	Mon	itoring St
16	The TA!	AS Ce	nter d	oes not	endo	rse o	r is resp	onsible	for the	data	nor gu	arantee the	data va	alidit	y. This s
17															
18	General	Techn	ical No	tes:											
19	Purple A	ir sens	ors use	e a non-	regula	atory	method f	for meas	uring an	nbient	t concer	ntrations of p	particle	poll	ation which
20															
21	Previous	work	explori	ing the	perfor	mane	e and ac	curacy o	f the Pu	rple /	Air sens	sors have sh	own def	ficier	ncies in th
22	been dev	elope	d; how	ever, th	iey are	e typi	cally ger	erated f	or a spe	cific	region,	season, or c	ondition	n, an	d little wo
23	correctio	ons ma	y be id	eal, a s	ingle	corre	ction act	oss Pur	le Air	senso	rs may	not be possi	ble. As	a ca	ation, sens
24															
25	2019 US	Wide	Correc	tion Fa	ctor I	Notes	<u>11</u>								
26	The 2019	US-W	lide Co	orrectio	on Fac	tor w	as built	and teste	d on 24	-hr av	veraged	data from c	ollocati	on v	ith Feder
27															
28	Uses the	US-wi	de con	rection	until l	PA _{ef}	exceeds	s 343 µg	m-3, th	en use	es a qua	adratic fit. C	ollocati	on d	ata captur
29	Low Con	centra	tion PA	$A_{cf_1} \le 3$	343 μ <u></u> ε	3 m-3	Formula	: PM2.5	= 0.52	x PA _d	_{f_1} -0.08	6 x RH + 5.	75		
30	High Cor	icentra	tion P/	$A_{cf_1} > 3$	343 µį	g m-3	Formula	a: PM2.5	= 0.46	x PA _c	£1+3.	93 x 10-4 x	(PA_{cf_1})	$^{2} + 2$.97
31	PA = Re	Read	Purple MeFirst	Pas	. PM teData	2 5 C	oncentra iew	tion_CF	1 nrov	ides l	nigher c	oncentration	is that a	re m	one strong
Rea	idy 📧			_	-										

11. After reading the ReadMeFirst tab, click on the PasteData tab. Select the time zone for your area from the selection box at the top of the sheet.

Fi	e Home	Insert	Page Layout	Formulas Data	Review View D	Hoper Help								🖻 Share
01	×	: ×	√ fx											
	А		В	С	D	E	F	G	Н	I.	J	К	L	м
1	Select Your	Fime Zon	e: Mountair	n Daylight Time	•									
2														
3	Copy and Pa	ste Your	Data Here:	IMPORTANT NOTE	You must click in Cell A	A5 to paste your da	ta and the data l	neaders of the orig	inal data from you	ır .csv file must match	the colu	mn head	ers show	n below.
4	created_at	PM1.0)_CF1_ug/m3	PM2.5_CF1_ug/m3	PM10.0_CF1_ug/m3	UptimeMinutes	RSSI_dbm	Temperature_F	Humidity_%	PM2.5_ATM_ug/m3				
5														
6														

12. Open the .CSV file you downloaded from the Purple Air site. You want to copy the data from this .CSV file into the Purple Air Sensor Time Stamp Correction spreadsheet. Copy only the data and not the data headers. One way to do this is to click on the first cell with data in the .CSV file, Cell A2. Then click on Ctrl+Shift+End on your keyboard. That highlights all of the data without the headers. Then, either press Ctrl+C on your keyboard or right-click on your mouse anywhere within the highlighted data and select Copy.

13. Back in the Purple Air Sensor Time Stamp Correction spreadsheet, click on Cell A5 of the PasteData worksheet. This is the first cell underneath the created_at column header.

A	5 *	×	$\sqrt{-f_x}$													~
4	A		В	с	D	E	F	G	н	1	J	К	L	м	N	
1	Select Your Ti	me Zone:	Mountair	n Daylight Time	•											
2																
3	Copy and Pas	te Your D	ata Here:	IMPORTANT NOTE-Y	ou must click in Cell A	5 to paste your da	ta and the data l	neaders of the orig	inal data from you	ır .csv file must matcl	h the colu	mn head	ers shown	below.		
4	created_at	PM1.0_0	CF1_ug/m3	PM2.5_CF1_ug/m3	PM10.0_CF1_ug/m3	UptimeMinutes	RSSI_dbm	Temperature_F	Humidity_%	PM2.5_ATM_ug/m3						
5																
6																
7																
8																
9																
10)															

Then, paste the data by either pressing Ctr+V on your keyboard or right-clicking on your mouse and selecting Paste. Your screen should now look similar to this.

AS	• 1	$\times \checkmark f_{\rm F}$ 2	021-06-17 00:00:00 UTC												
4	A	8	C	D	E	F	G	н	1	J.	к	L.	м	N	
	Colore Your Tin	Mountain	Daylight Time	-											
2	Select rour rin	lie zone.		_											
3	Copy and Past	e Your Data Here:	IMPORTANT NOTE-Y	ou must click in Cell A	5 to paste your dat	ta and the data h	eaders of the origi	nal data from you	r.csv file must match	h the colu	mn heade	ers shown	n below.		
4	created at	PM1.0 CF1 ug/m3	PM2.5 CF1 ug/m3	PM10.0 CF1 ug/m3	UptimeMinutes	RSSI dbm	Temperature F	Humidity %	PM2.5 ATM ug/m3						
ŝ	2021-06-17 00:0	8.74	12.25	13.43	7724	-65.13	112.5	0.47	12.25						
5	2021-06-17 01:0	11.92	16.4	17.42	7784	-67.63	108.47	1.17	16.39						
7	2021-06-17 02:0	14.15	20.34	22.36	7844	-64.33	103.5	3.93	20.28						
8	2021-06-17 03:0	11.81	17.13	18.69	7904	-65.23	100.13	6	17.13						
9	2021-06-17 04:0	12.04	17.58	19.3	7964	-64.43	97.97	6.37	17.58						
10	2021-06-17 05:0	12.41	18.64	20.74	8024	-67.5	94.17	7.97	18.6						
1	2021-06-17 06:0	13.54	19.38	20.65	8084	-64.5	92.77	9.7	19.38						
2	2021-06-17 07:0	12.26	17.67	18.85	8144	-62.6	89.7	12.53	17.67						
3	2021-06-17 08:0	10.72	15.37	16.66	8204	-64.83	88	13	15.37						
4	2021-06-17 09:0	11.25	16.04	17.13	8264	-64	86.77	13.4	16.04						
5	2021-06-17 10:0	11.52	16.77	17.93	8324	-60.7	82.87	15.63	16.77						
6	2021-06-17 11:0	12.14	17.63	19.13	8384	-62.7	79.87	18.4	17.63						
	2021-06-17 12:0	13.19	19.21	20.65	8444.93	-63.63	78.3	20.13	19.21						
8	2021-06-17 13:0	13.6	20.02	21.89	8505	-65.13	82.53	19.07	20.02						
9	2021-06-17 14:0	13.13	19.01	20.69	8565	-67.27	89.17	14.27	19						
0	2021-06-17 15:0	11.55	16.59	18.56	8624.69	-67.86	94.66	11.9	16.54						
1	2021-06-17 16:0	9.91	13.84	15.28	8685	-69.07	98.07	10.23	13.84						
2	2021-06-17 17:0	8.69	12.05	13.27	8745	-64.77	103.77	7.4	12.02						
3	2021-06-17 18:0	8.57	11.88	12.91	8805	-65.27	108.47	5.03	11.88						
4	2021-06-17 19:0	8.85	11.85	12.75	8865	-67.93	113.13	2.63	11.85						
5	2021-06-17 20:0	8.46	11.57	12.29	8925	-65.83	118.7	0.73	11.57						
26	2021-06-17 21:0	10.32	14.11	14.89	8985	-66.47	117.3	0	14.11						
	2021-06-17 22:0	10.32	14.13	14.97	9045	-66.83	114.27	0.13	14.13						
	2021-06-17 23:0	10.02	13.62	14.49	9105	-65 33	111.23	17	13.62						

14. Click on the View tab. The data are now shown with the correction applied for the time zone you selected in the PasteData sheet. You can see your time zone in Column B. In this example, the user selected a time zone of Mountain Daylight Time (MDT) in the PasteData sheet. UTC is 6 hours ahead of MDT. The spreadsheet converts the timestamp in UTC to MDT by subtracting 6 hours using a formula.

Purple Air sensors use a non-regulatory method for measuring ambient concentrations of particle pollution which do not meet the designation as Federal Reference Methods (FRMs) or Federal Equivalent Methods (FEMs) in accordance with Title 40, Part 53 of the Code of Federal Regulations (40 CFR Part 53). The spreadsheet applies the 2019 US Wide Correction Factor that makes the sensor PM2.5 data more comparable to PM2.5 data collected using FRMs or FEMs, **however, even with this correction factor applied, sensor data can never be used for regulatory purposes**. You can learn more about the 2019 US Wide Correction Factor here: <u>https://www.epa.gov/air-sensor-toolbox/technical-approaches-sensor-data-airnow-fire-and-smoke-map</u>.

					7												
	Your s	elected time zor	ne														
File	Home ins		ulas Data Review	V View Developer Help										ය s	Share	Commer	its
A1		× v utc															
~		one of the															
	A	B A A A A A A A A A A A A A A A A A A A	C	D ·	E AOI	F ADI CHINA	G	H H		J	К	L	м	N	0	P	4
2 202		Viountain Daylight Time	PINIZ.5_CF1_ug/m3	Corrected PM2.5_CF1 (µg/ma)	AQI	AUI Categor	y remperature_	Humidity_%					PM	2.5 CF 1	l vs Cor	rected PN	лd
2 202	21-07-20 00:00	7/19/21 0:00 PIVI	7.02	8.09202	30	Good	107.6	8.23	2.0								
3 202	21-07-20 01:00	7/19/21 7:00 PM	5.23	7.5000	22	Good	104.3	10.5	20								
4 202 5 202	21-07-20 02:00	7/19/21 8:00 PIVI	7.05	8.09538	33	Good	98.23	21.22	18								
6 202	21-07-20 03:00	7/19/21 3:00 PM	7.55	8.04902	33	Good	90.1	18 27	10			٨	Λ				
7 202	21-07-20 04:00	7/19/21 10:00 PM	7.49	8 14238	3/	Good	91.47	17.47	10								
8 202	21-07-20 05:00	7/20/21 12:00 AM	8 10	8 2802	34	Good	89.43	20.1	14			11	_				
9 202	21-07-20 07:00	7/20/21 1:00 AM	8 79	8 2482	34	Good	88	24.1		\sim		N '					
10 202	21-07-20 08:00	7/20/21 2:00 AM	9.07	8 3594	35	Good	86.9	24.5	12			L.					
11 202	21-07-20 09:00	7/20/21 3:00 AM	10.63	9.10782	38	Good	86.23	25.23	10		4	M/~	~ M			1	
12 202	21-07-20 10:00	7/20/21 4:00 AM	12.39	9.8278	41	Good	85.07	27.5						~			
13 202	21-07-20 11:00	7/20/21 5:00 AM	12.68	9.76962	40	Good	83.63	29.93	* 🔨				(U C	~ 1	1	
14 202	21-07-20 12:00	7/20/21 6:00 AM	12.22	9.46162	39	Good	82.23	30.73	6 V		-1/				\sim		_
15 202	21-07-20 13:00	7/20/21 7:00 AM	12.92	9.6562	40	Good	82.4	32.7									
16 202	21-07-20 14:00	7/20/21 8:00 AM	11.97	9.37978	39	Good	85.1	30.17	4								
17 202	21-07-20 15:00	7/20/21 9:00 AM	10.4	8.8188	37	Good	89.43	27.2	2								
18 202	21-07-20 16:00	7/20/21 10:00 AM	9.32	8.62958	36	Good	94.73	22.87									
19 202	21-07-20 17:00	7/20/21 11:00 AM	10	9.47682	39	Good	100.3	17.13	0	7/20/21	7/20/21	7/21/21	7/21/21	7/21/21	7/22/21	1/0/00	-
20 202	21-07-20 18:00	7/20/21 12:00 PM	8.82	9.20722	38	Good	106.4	13.13	6:00 PM	4:00 AM	2:00 PM	12:00 AM	10:00 AM	8:00 PM	6:00 AM	12:00 AM	
21 202	21-07-20 19:00	7/20/21 1:00 PM	7.76	8.92262	37	Good	110.73	10.03					PM2 5	CE1 ug/m3		orrected PM2	5
22 202	21-07-20 20:00	7/20/21 2:00 PM	5.43	7.90882	33	Good	113.23	7.73					1111210	or x_ognino		Directed rine	<u> </u>
23 202	21-07-20 21:00	7/20/21 3:00 PM	5.33	7.90498	33	Good	113.2	7.17									
24 202	21-07-20 22:00	7/20/21 4:00 PM	5.99	8.25678	34	Good	112.47	7.07									
25 202	21-07-20 23:00	7/20/21 5:00 PM	6.42	8.4778	35	Good	112.27	7.1					AQI				
26 202	21-07-21 00:00	7/20/21 6:00 PM	6.98	8.76298	36	Good	111.93	7.17									
27 202	21-07-21 01:00	7/20/21 7:00 PM	9.48	9.79122	40	Good	106.3	10.33									
28 202	21-07-21 02:00	7/20/21 8:00 PM	12.88	10.36898	43	Good	90.43	24.17									
29 202	21-07-21 03:00	7/20/21 9:00 PM	11.65	9.10502	38	Good	85.53	31.43							Good		
30 202	21-07-21 04:00	7/20/21 10:00 PM	17.12	11.4188	48	Good	83.47	37.6							Modera	ite	
31 202	21-07-21 05:00	7/20/21 11:00 PM	15.39	10.3816	43	Good	82.6	39.2							Unheal*	thy for Sensiti	re i
< >	ReadMe	First PasteData View	(+)					1 4							_		5Ì

In the View sheet, the corrected data are shown in the "Corrected PM2.5_CF1 (μ g/m3)" column (Column D).

15. There is also a line chart included in the View sheet that plots the corrected versus the uncorrected PM2.5 data. By default, this chart shows the first 5 days of data and the data range likely needs to be adjusted to accommodate your data. In the above example, you can see that there are only a few days of data and after that the chart shows straight lines. To adjust the data range of the chart, click on the line chart. Then, the cells that are included in the chart are highlighted. In this example, you would scroll down in the sheet until you get to the end of the highlighting.

AutoSa	we 💽 Off		୭ • ୯ - 🌮 :	⇒ Pu	irpleAirSens	orTimeStam	pCorrectio	n.xlsx 👻	P I	Search						
File	Home	Insert	Page Layout	Formulas	s Data	Review	View	Developer	Help	Chart Desig	n Format	:				
Chart 2		: •	1 6													
chart z			∇J^{μ}													
_	A		В		C			D		E	F	G		Н	1	
98		-	#VALUE!			0			5.75	24	Good		0	0		
99		-	#VALUE!			0			5.75	24	Good		0	0		
100		-	#VALUE!			0			5.75	24	Good		0	0		
102		-	#VALUE!			0			5.75	24	Good		0	0		
103		-	#VALUE!			0			5.75	24	Good		0	0		
104			#VALUE!			0			5.75	24	Good		0	0		
105		· ·	#VALUE!			0			5.75	24	Good		0	0		
106			#VALUE!			0			5.75	24	Good		0	0		
107			#VALUE!			0			5.75	24	Good		0	0		
108			#VALUE!			0			5.75	24	Good		0	0		
109			#VALUE!			0			5.75	24	Good		0	0		
110			#VALUE!			0			5.75	24	Good		0	0		
111		-	#VALUE!			0			5.75	24	Good		0	0		
112			#VALUE!			0			5.75	24	Good		0	0		
113		-	#VALUE!			0			5.75	24	Good		0	0		
114		-	#VALUE!			0			5.75	24	Good		0			
115		-	#VALUE!			0			5.75	24	Good					
116		-	#VALUE!			0			5.75	24	Good					المراجع والمراجع والم
11/		-	#VALUE!			0			5.75	24	Good		F	love	r ov	er the bottom right or
110		-	#VALUE!			0			5.75	24	60			1 0		C.I. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
120		-	#VALUE!			0			5.75	24	G			left	corr	ier of the highlighted
121		-	#VALUE!			0			5.75	- 24	Ğ					
122			#VALUE!			0			5.75		Gol			are	a. tł	nen click and drag to
123			#VALUE!			0			5.75	24	Goou					
124			#VALUE!			0			5.75	24	Good			cha	nge	the highlighted area
125			#VALUE!			0			5.75	24	Good			er la		
126			#VALUE!			0			5.75	24	Good			_		
127			#VALUE!			0			5.75	24	Good		0	U		
128			#VALUE!			0			5.75	24	Good		0	0		

Then, hover over the bottom right corner or the bottom left corner of the highlighted area (there is a little box shown there) and your cursor changes to a double-sided arrow. Click and drag up to where there is actual data to change the highlighted area to include only your data. If you had more data to add to the chart, you would click and drag down to change the highlighted area to where your data ends.

Here is how the chart looks after clicking and dragging to change the highlighted area.

16. You can add more charts to the spreadsheet if you would like to do that.

Notes:

Formulas used to convert UTC to other time zones:

Eastern Daylight Time: =UTC-(4/24) Central Daylight Time: =UTC-(5/24) Mountain Daylight Time: =UTC-(6/24) Pacific Daylight Time: =UTC-(7/24) Alaska Daylight Time: =UTC-(8/24) Eastern Standard Time: =UTC-(5/24) Central Standard Time: =UTC-(6/24) Mountain Standard Time: =UTC-(7/24) Pacific Standard Time: =UTC-(8/24) Alaska Standard Time: =UTC-(9/24)

Formulas subtract N hours (where N/24) from the UTC timestamp to reflect the time zone the sensor is actually located in.

To find what your time zone is in UTC and vice versa, here is a link to a UTC converter: <u>https://savvytime.com/converter/utc-to-pdt</u>

To convert 24 hour time to standard time and vice versa, see link below: https://www.calculatehours.com/Military_Time_Converter.html

Formulas used for the 2019 US Wide Correction Factor:

Formulas use the US-wide correction until PA_{cf_1} exceeds 343 µg m-3, then use a quadratic fit.

Low Concentration $PA_{cf_1} \le 343 \ \mu g \text{ m-3}$ Formula: PM2.5= 0.52 x PA_{cf_1} -0.086 x RH + 5.75

High Concentration $PA_{cf_1} > 343 \ \mu g \ m-3$ Formula: $PM2.5 = 0.46 \ x \ PA_{cf_1} + 3.93 \ x \ 10-4 \ x \ (PA_{cf_1})^2 + 2.97$

PA = Reported Purple Air $_{CF_1}$ PM2.5 Concentration. CF_1 provides higher concentrations that are more strongly correlated with FRM/FEM over the full concentration range.

RH = Reported Purple Air relative humidity. Considers relative humidity (RH) influence since monitors measure dry PM2.5 and RH can increase light scattering per mass.

Reference: EPA Tools and Resources Webinar AirNow Fire and Smoke Map: Extension of the US-Wide Correction for Purple PM2.5 Sensors slides, May 19, 2021 (https://www.epa.gov/sites/default/files/2021-05/documents/toolsresourceswebinar_purpleairsmoke_210519b.pdf)